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1. Introduction.

Two point boundary value problems are often solved by finite
difference or finite element methods. Sometimes one can find a
"closure" or "limit" of the method as the mesh size h—— 0. Such
closures are often shooting methods which provide more flexibility
and adaptability than the finite difference or finite element
method. The double sweep method (see, for example, Babuska,
Prager and Vitasek [3], Babuska amd Majer [2}, Keller and Lentini
{10]) 1is an example of this, which is also related to the invar-
iant imbedding method (see Scott [11]).

In this paper, we shall give a closure cf the Sturm sequence

algorithm for computing the nth

eigenvalue and eigenfunction of
the finite difference discretization of a Sturm-Liouville problem.
The resulting shooting method is related to the critical (or char-
acteristic) lengths in the invariant imbedding method. However, a
simple counting of critical lengths does not produce a correct
algorithm for calculating the nth eigenvalue (for general boun-
dary conditions). We shall discuss this in detail in section 3.
In addition, our method gives an a-posteriori error estimate for
the approximate value of the n*3 eigenvalue.

Standard methods by finite differences or finite elements
usually find the first n eigenvalues A , 1 . Kk . n. Shooting
methods, such as those discussed in Keller (9], find one eigen-
value, but do not determine which one it is. We are aware of only
one other shooting method which finds the nth eigenvalue. That
method, which uses the Prufer transformation, was given by Bailey
[5] and Godart [7], and was also discussed by Scott, Shampine and
Wing [12]. Our method has the advantage that it generalizes to
higher order problems and systems. Such generalizations will be
discussed elsewhere.

In section 2 of this paper, we formulate the problem and

describe the shooting method (which is a closure of the Sturm
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sequence algorithm). 1In section 3, a platsible but incorrect
algorithm is discussed. This is related to critical lengths. In
section 4, we discuss closures of numerical processes. In this
context, we outline the proof of our main theorem (Theorem 1),
which is the basis for our shooting method. 1In sections 5 and 6,

we recall details of the finite difference discretization and the

Sturm sequence algorithm. Section 7 deals with the closure of the
Sturm sequence algorithm, and the proof of Theorem 1. In section

8, we summarize our results, and state some conclusions.
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; 2. A Shooting Method for Eigenvalues and Eigenfunctions. NN
. Consider the eigenvalue problem $',.l.
N < t
;; (2.1a) -(p(x)u’')! + q(x)u = A r(x)u , for 0 < x « 1, E:_' ',,E
:: ag u(0) + 345 u'(0) = 0, 'f}‘ N
' (2 . 1b) , (N Nl
, a; u(l) + 3, u (1) = 0, 5‘(5_:;‘
Y Tsiaia
A where we suppose that: "}';::
) . Uy
'"{. (a) p(x), g(x), r(x) are continuous, and p(x) is piecewise -::-;._ﬁ
A
differentiable on [0,1]. E '
: (b) p(x) >0 and r(x) >0 on {0,1]. .‘:.5-:,,’
LA
;\. (c) The boundary conditions are normalized as follows: If -Ef,\j-:
> PN
M 3; = 0, then 3, =1; if 3, = 0, then a; =1 *
" i i i i 553!}:-
(for i = 0,1). k... .4
3 \'F:"\.
It is well-known that the eigenvalues of (2.1) form an increasing \"33;\'
. ‘\ o~ .
P sequence: C“)_;::.\ !
2 DY
A V] Ay < g <L <A <L E’-“"-'
J and lim A = «, A,
: o © I
,-.*j.:.s
Remark 1. Without any difficulty, we could assume that p, q, r ':ﬁi:
are piecewise continuous functions, instead of continuous func- '7&“ .
’ tions. For simplicity, we have assumed they are continuous. RS
' [ SAY
OGS
3 Remark 2. The boundary conditions in (2.1) could also be written \{t;
‘y . SN
i in the form L;:‘_:;:;-*
] a, u(0) + s, p(0)u’ (0) = 0, -
' (2.1¢) ° e R
ay u(l) + 4, p(1l)u (1) = 0, ::.;._::_.
! ’ n.:)‘-
"u which would be more natural, for physical reasons. Obvicusly, .ﬁf.:'}\
\ Y M
conditions (2.1b) and (2.1c) are equivalent. We have chosen ';
N (2.1b) for simplicity. '\I.::
. - -h
j We shall now describe the shooting method for finding the .‘::":\
. T
' nth eigenvalue and eigenfunction of (2.1). Choose a number \,. -:E
R 0)
‘ and let uo(x) be a nontrivial solution of the initial wvalue i
Y
2 -5 -
)
RA
,.
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problem:

[’—(p(X)u' )+ q(x)u
[ao u(0) + }O u’ (0)

AO r(x)u , for 0 - x < 1,
0.

{2.2)

{(Choose any initial conditions which satisfy the boundary condi-
tion agq u(o) + 30 u’ (0) = 0.) Let No = No(xo) be the number of
zeros of uo(x) in the open interval (0,1). (Note that the
unigqueness theorem implies that all zeros have multiplicity 1.)
Let v = v(lo) = ay uo(l) + Bl ub(l), and
[o if v uo(l) >0 or v =0,
g = 0ad(kg) =
]1 if v uo(l) 2 0 and v = 0.
{Note that Ao is an eigenvalue if and only if v = 0.) Finally,
let N(Ao) = No + o. Thus, N(\o) is the number of zeros of
uo(x) in (0,1), with a correction which depends on the boundary
condition at x = 1. The shooting method depends on the following

theorem, which will be proved in &7.

Theorem 1. N(1q4) equals the number of eigenvalues of (2.1) which
are less than Ag-.

We can now describe the shooting method:

Step ¢. Find values LO < RO, such that N(LO) = n-1 and
N(RO) = n. This implies that lg ¢ by € Ro.

Step k. For given values Lk-l < Rk—l' with N(Lk—l) = n-1 ,
N(Rk_l) = n, find values Lk' Rk' such that N(Lk) =
n-1 , N(Rk) =n , Lk—l . Lk < Rk : Rk—l' and
Rk—Lk < Rk_l“Lk_l .

STOP when Rp-L, . v, where 1 is a given tolerance.

To implement the above steps, we need an initial value solver

to compute uo(x) and a nonlinear solver for Lk and Rk' The

approximate eigenvalue ‘n will be either the midpoint of the

last interval (L,,R.], or the last approximation 1\, found by a
- 6 -
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nonlinear solver. The approximate eigenfunction on(x) will be
the solution of (2.2), with Ao = Ag-
STEP 0 can be carried out either by using estimates of ‘n
which the user may have, or by using a related boundary value
problem whose eigenvalues are known. For STEP k, we can use the
bisection method for the integer-valued function ©N(A), or we can
combine this with a nonlinear solver, such as the secant method,
for the function v(i).

Assuming that the ODE's under consideration are solved
exactly, the method gives a sharp a-posteriori error esimate for
the eigenvalue A Of course, the ODE's will be solved numeri-
cally. An effective implementation of this method must relate the
accuracy of the initial wvalue solver (governed by an input
tolerance parameter) to the value Rk—Lk, and to the accuracy of
the nonlinear solver for finding Lk, R. A detailed analysis is
required to determine the effects of the approximate solution of
ODE's on this method, and on the a-posteriori error estimation.
Such an analysis, together with a program implementing the method,

will be published elsewhere.

Remark 3. If we are only interested in the wvigenvalue (I and
not the eigenfunction On- then we need only concern ourselves

with the count of the zeros of wu(x) and the correction term .
This can be obtained by solving various transformed formulations

(such as that used in the invariant imbedding method).

Remark 4. The method resembles a count of the critical lengths in
the invariant imbedding method (see [11], chap. V). However, a
simple count of the critical lengths (with no correction term)
does not produce a correct algorithm, for general boundary condi-

tions. We shall return to this point in 33.

Remark 5. Theorem 1 leads immediately to the following corollary,

which is a classical theorem about eigenfunctions.
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of (2.1) has exactly

eigenfunction ¢n(x)

th
n

The

Corollar

the interval (0,1).
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3 An Incorrect Algorithm ?\ N

. g : Agatd

We consider an alternative algorithm for calculating the nth §“{¥;'

eigenvalue of (2.1). Let uo(x) denote a solution of the initial L-: ;E

value problem (2.2), as before, and let vo(x) = uluo(x) + .'flu(')(x). E}E‘;"{\
-

It might seem natural to count the zeros of vo(x), rather than ,;-k '

s .

counting the zeros of wugy(x), with a correction using vg(1), as BASSRS

T iy

in the previous section. In other words, if N'(i,) denotes the jfsiﬁv

S AN

number of zeros of wv4(x) in (0,1), we might conjecture the -ﬁﬁkﬁ:ﬂ

AT NN

following:

Hypothetical Theorem. N'(lo) equals the number of eigenvalues of

(2.1) which are less than Ag-

; This would lead to an alternative algorithm for finding ‘he by « )
replacing N(d o} by N'(i,) in STEP O and STEP k (previcus sec- ff?:ﬁ&v
tion). However, the above Hypothetical Theorem turns out to be 533353
false. It depends on monotonicity properties of eigenvaluss, :?G;?i‘
which are valid for Dirichlet boundary conditions., but not for :;557\
° .

general boundary conditions. At the end of this section, we shall

give an example where the alternative algorithm {(using N’(ko))

fails.

Note that if vo(xo) = 0, then ‘o is an eigenvalue on the
interval [O,XO], and Xq is a critical length {(as used in the
invariant imbedding method). Thus N'(lo) is the number of cri-

tical lengths {(corresponding to AO) which are less than 1. We
see that a simple count of the critical lengths does not produce a

correct algorithm for calculating the nth

eigenvalue of (2.1).
We shall now indicate the role played by monotonicity

properties of eigenvalues. For 0 < y 1, let i, (y) denote

the nth eigenvalue of the same operator as before, with the same

boundary conditions, but on the interval [0,y]. In other words,
\ﬂ(y) is the nth eigenvalue for the problem:
- 9 —
[ I T S I N R T 7 T ST s SR PR S K SRR S SV S
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webe
< id

b Lo ¢

f-(p(X)u')’ + q(x)u
N (3.1) vlao u(0) + 34 v/ (0) = 0,
0.

A r(x)u, for 0 < x : vy,

.al u(y) + 131 u’ (y)
For a given n, we ask the following question:

(Q) Is kn(y) a decreasing function on (0,1]7

If the answer to (Q) 1is yes, for all n, then the Hypothetical

P S B WA

Theorem is true and the alternative algorithm is correct. For
suppose that Xp (0 < Xg < 1) 1is a zero of

vo(x) = a, uo(x) + 31 ub(x), where uo(x) is a soulution of

P et e bl &f 4

{(2.2). Then Ao is an eigenvalue on [O,XO], i.e., ‘g = Ak(xo),

for some k. Since kk(y) is a decreasing function,

- e = lk(l) < Ak(xo) = Ao. In this way, each zero of vo(x)

s ¢
Y % Y o
R ]

corresponds to an eigenvalue less than Ao- This shows that the

e
A

‘. "l
l'

.
e

-, Hypothetical Theorem and alternative algorithm are correct, if

P
Y

RS

D
Iy
LYY

Lt
¢

v

.

|

r.

Aply) is a decreasing function, for all n. Unfortunately, this

"

LA,
‘J

is not true for general boundary conditions.

h]

e
[d

L]
L
...~1,l
L]
\]

If the boundary condition at the right endpeint is a

- o e e
s
< <

A
)
-~

\{‘-"\
o
AN

Dirichlet condition: u(y) = 0, then the classical monotonicity

Y,

theorem tells us that kn(y) is a decreasing function, for all | B
d

"
.

X n. But Greenberg [8] has shown that if the boundary condition at

- the right endpoint is not a Dirichlet condition (i.e., by % 0.
then for given n,; : 1, there exist coefficient functions p(x),
q(x), r(x) and a subinterval [a,b] - (0,1], so that the eigen-

values Al(y), Az(y), “e ey \no(y) are increasing functions in

(a,b]. (On the other hand, for given p(x), q(x), r(x), vg, ’o¢

w A

Ay 61, there exists n, = 1, so that for n : n; . An(y) is a
decreasing function on (0,1].) Thus, we cannot expect the
Hypothetical Theorem and alternative algorithm to be correct for
general boundary conditions. We now give a concrete example where

they fail.

a4 SV
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8, S
B Example. For O < y < 1, consider the eigenvalue problem: %g;g
o l‘(P(x)u’)' =1u, for 0 : x vy, ﬁ&;}
. ot
| (3.2) u(0) + u'(0) = o, o
K- AR
N [ = )
g »u (Y) = 0, ;;’!‘:;1
).
2 The energy norm is given by -5?:
N ) Y ) :3;:'.:'_'.
(3.3) B(v,v) = -p(0)v(0)? + [ p(x)v' (x)2ax, L
- AN
; 0 DAE
. and '
s - B(v,v s
8 (3.4) Aily) = dnf —t(VLTL , o
N veC~[0,v] LV el
*: y el
" i. 2 — 2 '-" o,
where vhie = v(x)“dx. )
< 0 e
) Putting v(x) = 1, we find that a,(y) = B(Vlg) = —péO) . Thus RGN
‘ v e
4 r\'r_ 4
o (3.5) Aq(y) < o0. ;._:_‘:
] We now consider the two algorithms (given by Theorem 1 and the % ]
.. -
’ Hypothetical Theorem) for finding the number of eigenvalues 1 < 0 o
SR
L ({for the interval [O,y]). We must solve the initial wvalue gié
4 PR
L problem: {L#
v \""
{. -(p{x)u’)’ =0 e
3 (3.6) [-tp W
2 lu(o) =1, u(0) = -1. BN
" :".‘\4
w A .
) Denote the solution by ug(x), and let vo(x) = ug(x). We RN
2 obtain: -p uy = constant = p(0), so that
- va(x) = up(x) = BiY
Y (3.7) : x
Uq {(x) =1 - ‘ E{'—f‘g'p 0 dt.
X 0
.. Since ub(x) <0, uo(x) is a decreasing function (with
uO(O) = 1). For agiven y (0 <y < 1), either o
' (A) ugly) - 0 and wun(y) <0, or L
p] A
3 (B) uo(y) < 0 and ub(y) < 0. Kﬁq
¥ N
N - 11 - R
- b .
e
4 e
e e T AR P TR TR A [ B SR N e e -~ - R L . . A, . .j‘
N e e e e T L RATIRD! RSB > SR
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ft
[

In case (A), No = [number of zeros of uo(x) in (0.vy)]
=1, and N = N0 + 0 = 1.
In case (B), No =1, 0 =0, and N = No + 0 =1,

PR e

Thus we see that the algorithm of Theorem 1 counts 1 negative

o

eigenvalue on [0,y], for all y in the interval (0,1].

-

On the other hand, the alternative algorithm, based on the
Hypothetical Theorem counts the zeros of vo(x) = ub(x) in

(0,y). Since wv,(x) < 0 , N =0, predicting no negative eigen-
0

\ pet s et e et

values! Here we have an example where the Hypothetical Theorem

and alternative algorithm are incorrect.

Remark. Greenberg [8] has shown that in the above example, 1\, (y)

; is an increasing function on (0,1]. Thus we have "reverse mono-

.;'

¢
h Y

tonicity”" in this example!
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4. Closure of a Numerical Process.

Standard methods for solwving boundary value problems involve
two stages:

(A) A discretization method (such as finite differences or finite
elements) which approximates the continuous problem by a
finite-dimensional algebraic problen.

(B) An algorithm for solving the algebraic problem.

It may happen that the algebraic algorithm is equivalent to
finding a numerical solution uy of an initial value problem, and
manipulating this solution in some way to find some desired
approximate value =z,. Perhaps 2z, = F,(u,), where F, is some
function. As the mesh size h-— 0, suppose that Fp,—F (some
function), u,—u {the solution of the initial value problem),
and Zp— 2 (the value we wish to compute). O0Of course we then
have 2z = F(u). Thus we obtain an alternate method for calculat-
ing z, which we call a closure of the numerical process. This
method consists in solving the initial value problem to find u,

and then calculating F(u) to find =z.

We have in mind situations where the initial value problem is
hidden in the numerical process. Finding a closure amounts to
discovering a hidden initial wvalue problem. If we find a closure,
then we gain a better understanding of various properties of the
algorithm, and we can improve it. The algebraic algorithm may

have involved a low order method, such as Euler's method. We can
choose a higher order initial value solver, or one which is

especially adapted to the particular problem.
We shall show that Theorem 1 is a closure of a numerical
process. In the next section, we review the discretization by

finite differences. In the following section, we discuss the

algebraic algorithm, using Sturm sequences. In this context, zy
is the number of eigenvalues (of the finite difference equation)
which are less than ‘o The Sturm seqguence turns out tc be
- 13 -
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related to the initial value problem (2.2). Fh counts the number

of sign changes in the Sturm sequence. This turns out to be the

same as the number of sign changes in the numerical solution up

VY EX X

of (2.2), except for the last term. This last term gives rise to
the correction term ¢ (mentioned in &2, where N(lo) is
defined).

The general notion of closure is probably due to S..L. Sobolev

[13]), [14]). 1In [14]), Sobolev defines closure and applies it to

P Ard g o

the elimination method for solving a discretized integral
equation. Babuska, Prager and Vitasek [3], [4] find closures of
several algorithms. The closure method seems to have many other
possibilities for application. We plan to return to some of them

in the future.
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5. Discretization.

We shall discretize the boundary value problem (2.1) by
finite differences. We use uniform mesh of size h = 1/n, and
the finite difference operator:

A (ui) = % (u1 - u l).

.1 .
+-2— 1'2'

Approximate the differential equation by the difference egquation:

-A (py 4 (ui) + qguj = A rjuy.,
or equivalently:

2 = 2
(6.1) —pi—iui'l + (pi—l + pi+L + h%qi)uy - pi+iui+1 = A hrjuy.

2 2 2 2
The boundary condition aq u(0) + 3,5 u' (0) =0 is approxi-
mated by the difference equation

| . [®17% S0l
4o Yo * o [TH | =0+ °T Yo T 3 ThRa,

Substituting this into (56.1), with i i, we obtain

—ha, 2 2
(5.2) 36:566 P, *P; *+ h qq|u; - Pyuy = A h rqu,.
: 2 2 . 2

The boundary condition «aj; u(1l) + 8, u'(1) =0 is approxi-
mated by the difference equation

Up~Up_g BiYn_y
n = 7 ¥ha,

1]

=0, or u

ay wy + Bl[

Substituting this into (5.1), with i n-1, we obtain

ha1

2
(5.3) -p U._, + (p ., + ; + h®q__,)u,_
pn—% n-2 n—% ¥y Fhd pn—% An-1'Yn-1
- 2
=X hrp_ 45y

Thus, we have a finite-~-dimensional eigenvalue problem:
(5.4) Au = X Ru,

where A 1is the finite difference matrix
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A = by a3 b;
bn-3 3p-2 Pp-2
Pp-2 3n-1]
with a, = “hag + + h?
1 T B =ha, Pt P q;
a; =p , +p,, *+ h2qi {2 < i . n-2),
7 i
a = + by + h?
n-1 P _3 B.+ha; P_ i An-1-
n 1 1 ——
b; = -p (1 < 1= n-2),
i 1
i+z
and R is the diagonal matrix
r
1 r,
r
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NG 6. Sturm Sequences.

The finite difference discretization has approximated the

i continuous eigenvalue problem by the finite-dimensional eigenvalue
mi problem

t‘,

e (6.1) Au = A Ru.

% The algebraic algorithm we shall use for this is the method

d

:q of Sturm sequences. We shall briefly recall the definition and

.

W main theorem on Sturm sequences, in the context of (6.1). Details

about Sturm sequences can be found in Bathe, Wilson {6], Stoer,
oo Bulirsch [15] and Wilkinson [16].

%; For a given number 10' the Sturm sequence

%] Sofhg)s S;(Ag)s ..., Sp_3(xg) 1is defined by: Sy(iy) = 1, and
‘3 for 1 ¢« i s n-1, Sj(rg) is the leading i i principal minor of
’g A-15 R. In other words, S;(,) is the determinant:

By

3 (a;-Ah%r)) by

-3 b1 (az—xohzrz) b2

N .

3 Si(%) = .

‘ bj_p (aj_j-Aoh’ry_;) biy

N by_: (a;-2 oh%ry)
\-

3 The following theorem is the main fact that we shall need.

Sturm Sequence Theorem. Let c(\o) be the number of sign changes

'; in the sequence Sg(ig), S;(Ag), ..., Sy _y(35). Then c(ig)
- equals the number of eigenvalues (of the problem (6.1)) which are
Y] less than ;.
Note: If Si(lo) = 0, then it counts as a sign change, in the

\

‘; above theorem.
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7. Closure of the Sturm-Sequence Algorithm. Proof of Theorem 1.

For a given number Ao consider the initial value problem

- r
e

(7.1) .'(p(X)ul): + g(x)u = \O r(x)u , for 0 - x - 1,
u(0) = 35 , u' (0) = -qag.

Cwowe

A

Note that the initial conditions were chosen to satisfy the

TR
Ve

oy

Wb

)
'
s ¥y ¥

! boundary condition ag u(0) + 3, u’(0) = 0. Thus, equation (7.1)

P h L
»

¢ & r ¥
Y
\"
gy

o

is essentially the same as (2.2).

A)

’
2

(¥

»
'

Ia
[

Consider a finite difference approximation to (7.1). We

)

obtain the same difference equations (5.1), including the first ;Sﬁﬁ
equation (5.2), but with A, replacing L. We do not obtain the j.:;f;
last equation (5.3), because u is not required to satisfy the ;&ai’
boundary condition at x = 1. Thus, the finite difference La"'r
approximation u; satisfies: ﬁﬁz'

(7.2) ' (a;-Ag h2rj)u; + bju, = 0, %E}L

)
N

¥

and

(s

(7.3)  by_quy_q + (a;-Ag h%ry)u; + byuy,; =0, for 2 : 1 : n-2.
It also satisfies a last equation

P _3%n-2 (pn-3 tp o, 0t hzqn—l)un—l P 4Yn

3
2 n-< n--

which can be written

’ 3

! _ 2 -

X (7.4) bn—2un-2 * [®n-1 * 3;?561 pn 1 ‘o h Thn-1{Y%n-1 * bn—lun = 0.
N . 4

y We shall relate the Sturm sequence So(io),sl(lo),...,Sn_l(lo)

to the solution Uy, Up, «v., Uy of the above finite difference

equations. We first consider the case where all Si(Ao) are

I‘.{‘.

] nonzero. We shall use the notation

A
' "%"‘I

= 2

Py
'ﬁ.

4 »

For 1 - i1 : n-2, consider the first i equations:

A
el

L)
.
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[a.u. + b,u = 0

1% 142
blu1 + A2u2 + b2u3 =0

bj_puj o + Aj_yuj 4 + Dy quy =0

bj_quy_g * Aju; = -bjuy,,
By Cramer's rule:
-b:u S (Ln)
_ TPi%+1%i-1lt0
Ui LY » OT
(7.6) he = b, eaitl for 1 : i : n-2
Si-1(%g)J 1 5;1%,T
uy ti ti
Let ti = -ST-—(—FT Then ti+1 T B = B
i-1'70 i j+L
2
ty
(7.7) tiv1 = p , 1 1s n-2.
.1
its
This implies that
(7.8) t ©1 1. 1
. . = , FR n-
1 P, 4P, 3 - P;Ps
Z Fy 77
.

Thus, all the ratios ¢t = 1 (1 < i: n-1) have the same
17 531T%]

sign. This implies that the sequences
So(ko), Sl(\o), c ey Sn_z(lo) and Wy Ugr oeey Vg have the
same number of sign changes.

We must still determine what happens with regard to a
possible sign change from Sn_z(\o) to Sn_l(\o). To find this,
we shall consider all (n-1) equations for the wu;. The last of

i
these equations is (7.4), which can be written

{

= - | 1

(7.9) Pp-2¥n-2 * Ap_qUp-y = “p-1Yn * !1+Eu1 pn-Lun—l
: 2
Let
: 7
(7.10) Va = ~{Pn-19n * yFRa; P i Vn-2
4
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Then (7.9) can be written

(7.11) bn—2un—2 + Ap_ U, vy -
Now consider the (n-1) equations for uy
Alu1 + b1u2 =
blu1 + A2u2 + b2u3 =
bn_3Un-3 * Ap_oup o + by oup
bhogUn-g + Ap U4y T YV
By Cramer's rule:
V.S _,{Mg)
w,_, = n"n-2'"-0 , or
sn-l(xoj
u v
-1 n
(7.12) n =
Spn-2{to) Sn-1tto’
Thus, the two sequences SO(AO), Sl(xo), . Sn~1(lo) and

u;, u,, cr Up_ys Vg have the same number of sign changes.

We now consider the case where some of the Si(xo) are zero.
We first note that there is a recursion relation

= _ 2 - K

(7.13) Si(lo) = (ai loh ri)si_l(lo) b1—1si—2“o)'
which is obtained by calculating the determinant Si(ko) by
cofactors of the last column. This implies that two consecutive
terms Si_l(\o), Si(lo) cannot both be zero. For if
Si_l(Ao) = Si(ko) = 0, then the recursion relation implies that
Si_z(lo) = 0. (Note that bi—l = -pi_L # 0.) Similarly, it would
follow that S, _,(lg) = Sj_ziAg) = S;(1g) = Sy(iy) = 0. But
So(lo) = 1. Therefore, two consecutive terms in the Sturm

sequence cannot both be zero.

Similarly, two consecutive terms in the sequence

For if

Ug, Wy, 0., U, cannot both be zero. uy u.
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then (7.3) shows that wu, , = 0. Similarly, this would imply
that u; = v, = = U549 = 0. The initial conditions

u(0) = 34, u' (0) = -adg in (7.1) are implemented in the approxi-
mate solution by: Ug = 35 , —p— = -dg- Since u; = 0, this
implies that uy = hao and uy = Bg: SO that $g = huo. This

relation can be satisfied by at most one value of h, since a,

and 3y are not both zero. We assume that h 1is small enough so

that 345 = hao. The assumption u; = u = 0 now leads to a

i+l
contradiction.
We have shown that two consecutive termc Si(\o), Si+1(‘0)

cannot both be zero, nor can two consecutive terms Ugr Ujeq-

This fact, together with equation (7.6), written as

shows that Si(lo) = 0 if and only if Ui4q = 0. Now suppose
that Sio(lo) = Sil(\o) =
is zero. The argument given above, for the case where all Si(\o)
are nonzero, shows that the sequences

S, , S; (Vpdy ... S _1{Va)., and
lk+1 1k+2 0 ik+1 170

u; , u e Qs - have the same number of sign changes.
i+t ik+2 i1

The same holds for the beginning and end segments of the Sturm

sequence, corresponding to 0 . i = io-l and im + 1 i . n-1.

Thus, if we count a zero as a sign change, then the two sequences

So(\o), Sl(\o), ey Sn_l(ko) and Ug, Ugu ovy Up_gr Vg have

the same number of sign changes. The Sturm Sequence Theorem now
implies that the number of sign changes in the sequence

U u u v equals the number of eigenvalues of the

1" "2 "7 Yn=1' 'n
approximate problem Au = @ Ru, which are less than Ag-
We now consider what happens as the mesh size h— 0. Let

uo(x) be the solution of (7.1), and v = oy uo(l) + 4y ub(l). We

shall consider four cases, according to the possibilities that

- 21 -
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ug(1) and v are zero or not. ::":ﬁ'
Case 1. wuy(1l) = 0, v = O. j,\.r,);
S
The continuous problem has only finitely many (say m) "Sj\"
eigenvalues less than Ag- It is known that the first m eigen- ;;Qi\',
SOt
values of the approximate problem converge to the first m eigen-
[ .
values of the continuous problem as the mesh size h— 0. The :'.: f_
o
number of sign changes in the sequence u., u., ..., Uy \j:'_"_:
- “ - ’t’ “u
converges to the number of zeros in (0,1) of the solution u,(x) ~".'.:::?
el
of the initial value problem (2.2) and (7.1).
SRS
We must find what happens to Vh, as h— 0. Recall that ﬁ:.:
::.::\_r\
By : G
Vi = 7| Pp-1¥n * T ¥hay pn__1_un-1 and b, ; =p _1 A simple ::ﬁ":‘
2 — [ XN
calculation shows that bl
S
hp,__1 : oS
(7.15 = -—;—-ﬁ—-nT “n"Un-1]| AR
.15) Vn = IR azu, + 34 S:-._.-_.,
1 1 Y
ateta
Recall that the boundary conditions are normalized: either .‘,,
3;, =0 and «; =1, or B8, =1. Thus Zf:‘"':‘:::
A_-_':\
L
p ,u, ., if B8, =0 NN
n--;— n 1 B
v = ,‘;._-.)\‘
n o hp,,_1 AN
by u.-u - Yo
—ﬁ-ﬁ%— ctlu + [_n—hll;l']i’ if :"1 = 1. -',':'-',".'-"
Ay n : el
-.,*.:,
This shows that for small h , Vi has the same sign as S
f G
v = u, unll) + 3, uH(i), where u,(x) is the solution of (7.1). RO
1 Yo 1 Y0 0 R
Thus, for small h, the comparison of signs between u,_; and &'4-::-
poy
Vh is the same as that between uo(l) and v. This shows that k_, X
A
the correction term ¢ should be 1 if there is a sign change [
|-
between u(1l) and v, and otherwise 7 should be 0. This F‘,:-.;-
concludes the proof of the theorem, in Case 1!. ‘;'..\:*-
. % N
Wafs
Case 2. wuy(1l) =0, v = 0. ‘é,i
In this case, o =1 by definition, =1 and ;'\:’,:.",
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Vo= uo(l) + ub(l). If uo(x) has positive values in some :Qﬂﬁ
small interval (1-:,1), then ub(l) < 0, and S
. s
-_— ’ — 1 : - -_‘ .
E VvV = da; ug(l) + ug(1) = ug(1) < 0. If uy(x) has negative values ﬂif?n
Y in (1-¢,1), then wu4(1) > 0 and v > 0. Thus there is aiways a Q3£§f
N ':--,‘- Y
i change of sign between uo(x), for x close to 1, and wv. S
\ s A . = . .- -, .
) Now consider the sequence u«;, up, ..., ¥, 4., V,. For small :ﬁﬁct‘
f h, the number of sign changes in this sequence eguals the number }35“.
¢ e v
» EACACH
. of eigenvalues (of both the approximate and continuous problems) ﬂ?\{:
< e
i which are less than 1. ; e
% . 1 . N La
2 (7.16) #(eigenvalues < ko) = #(sign changes in “1'u2""'un—1'vn)‘ :,Lﬁ;
= ~aals
$ Since ug(l) = 0 , uy(x) = 0 for == near 1. Chcose X, ;;Qﬁr
1 ST

near 1, 30 that uo(xc) = 0 and ué(x) = 0 for ¥q X i.

Then uo(x) is monotone on [xo,ll, and it has only one zero in

R

s ..:-':
s .
0 this interval, namely at x = 1. We may suppose that Rg = igh. S
- Then, for small h, '
g
o #(sign changes in u;, u,, ..., uioi =
S (7.17) #(zeros of wuy(x) in (0.,x4]) =
;; #(zeros of uo(x) in (0,1);.
.,
Also, from (7.16), we have
:J #(eigenvalues < 1 g4) =
L, . R
2 (7.18) #(sign changes in Ug, Up, vy uio) +
; #(sign changes in uio, ceel Uplge V)
v We claim that
o~ . X
g #(sign changes in uio, cees Upa, v,) = 1.
N
h If we can show this, then (7.1i7) and (7.18) imply that Theorem 1
®
f is correct in this case.
.
ﬁ Since ub(x) = 0 on [xo,l], the sequence
‘o - Cie e
E uio, uio+1, +++, Up. 4 is monotone. Thus it can have at most one
B sign change. 1If there is a sigun change, then either 1, ; = 0
A
o - 23 -
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{which counts as a sign change) or u has the opposite sign to
PP g

n-1
that of uo(x), for Xg = X < i. In this case, there is no sign
change between u,_4 and Vo (since we hrave seen akbove that
there is always a sign change between u(x), for x near 1,
and v). Thus #{sign changes in Us o .. ¥p_q. V) = 1, in
this case.
If there is no sign change in the sequence
uio, uio+1, ceer Upnq then Upn-1 and v. ~have opposite signs.
Again we have #{(sign changes in uio, cee Mpoqs V) = 1. We
have shown that
#(eigenvalues < Ag) = #(zeros of uo(x) in (0,1)) + 1.

This proves the theorem in Case 2.

Case 3. uo(l) = 0 , v =0,

In this case, o = 0 by definition. Also ‘o is an

eigenvalue of the continuous problem, say o = Mg Thus, there
are k-1 eigenvalues (of the continuous problem) less than Lg-
We must show that the eigenfunction wk(x) = Uug(xX) has exactly
k-1 zeros in (0,1). Of course, this is a classical theoren.
But we want to show that it follows from Sturm sequences.

Let uo(x,l) denote the solution of (7.1), with 1 replac-
ing Lo and let ul(l), u2(\), e un_;(\), vn(\) be the

corresponcing sequence obtained from the finite cdifference
solution. Let <¢(A) denote the number c¢if sign changes in this
sequence. Choose 1V, A/ close to ‘o = ‘i such that

L <1y < A", By Case 1, c(r) = k-1 and c{\’') = k. Since
uo(l,ko) = 0, the number of zeros in (0,1) is the same for

uo(x,\), uo(x,lo), uo(x,k’). Also, this number of zeros eguals =

P

the number of sign changes in the sequences

.‘: g
<

ul(\), uz(A), ce ey un_l(l) and ul(k'), uz{l'), c ey un_l(\’). o
Since c(A’'}) = c(a) + 1, the extra sign change must come from a ;?
change in sign of Vn- This shows that uo(x,\o) has k-1 zeros :f
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in (0,1), which proves the theorem in Case 3.
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Case 4. uo(l) =0, wv=20.

ﬁ
o
AN

A

Again Ao is an eigenvalue, say Ag = ‘g In this case, we

y

‘s %
W
WA

have a Dirichlet boundary coandition: «, u(1l) + 3, u (1) = u(l1) ;

.’ w'.‘l
s
e

v = uo(l), and o = 0 by definition. We must show that
uo(x,lo) has k-1 zeros in (0,1).

As in the previous case, choose 1, ' close to Ao with
1< *0 < A'. Then vwv(Ar) = uo(l,l) = 0 and v{A') = uo(l,\') = 0.
By Case 1, uo(x,l) has k-1 2zeros in (0,1) and uo(x,\') has
k zeros in (0,1). The extra zero¢ must arise from uo(x,ko), at
X = 1. Therefore uo(x,ko) has k-1 zeros in (0,1). This

concludes the proof of the theorem,
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8. Conclusions.

A closure exists for any numerical process dealing with a
matrix problem which comes from discretizing an ordinary differen-
tial equation. We have shown that the closure of the Sturm
sequence algorithm for finding eigenvalues leads to a certain
shooting method. Other numerical processes, such as vector iter-
ation methods, transformation methods and polynomial iteration
techniques also have closures. We have mentioned some closures
{such as the double sweep method) of algorithms for solving
systems of linear eguations. A closure of an algorithm is impor-
tant, because it leads to a new method for solving the continuous
problem. The new method is often superior to the finite differ-

ence or finite element method, because it has greater flexibility.
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